Погашение долга в рассрочку

Реферат

Погашение долга в рассрочку — раздел Финансы, Финансовая математика В Практике Финансовой Деятельности Долг Часто Погашается В Рассрочку, Т.е. Ра…

В практике финансовой деятельности долг часто погашается в рассрочку, т.е. распределенными во времени платежами. При погашении основной суммы долга частями его текущее значение будет уменьшаться и, следовательно, сумма процентных платежей также будет уменьшаться.

Погашение долга частями также может осуществляться различными способами. В зависимости от преследуемых интересов стороны могут выбирать различные, удобные для них режимы в виде постоянных или переменных финансовых рент, а также нерегулярных потоков платежей.

7.1.2.1. Погашение основной суммы долга равными частями.

При этом величина погашения долга определяется следующим образом:

dt = D : n = const ,

где dt – величина погашения основной суммы долга;

D – первоначальная сумма долга;

n – срок долга в годах;

t – номер года, t = 1, 2, …, n .

Проценты начисляются на уменьшаемую сумму основного долга:

It = Dt

  • q ,

где Dt – остаток долга на начало очередного года;

q – ставка процентов, начисляемых на сумму долга.

Тогда размер срочной уплаты можно представить как сумму процентов и сумму погашения долга:

Yt = It + dt ,

где Yt – срочная уплата на конец текущего года.

Пример. Сумма 100 тыс. долларов выдана под 10% годовых на 3 года. Определить величину срочной уплаты при погашении основной суммы долга равными ежегодными частями.

Решение:

Величина суммы погашения долга равна:

dt = D : n = 100’000 : 3 = 33’333,33 доллара.

Поскольку величина срочной уплаты при таком способе погашения долга меняется из года в год, то в этом случае без построения плана погашения долга в виде таблицы просто не обойтись.

Все темы данного раздела:

Российская экономика все более интегрируется в мировую экономику, что требует использования финансового инструментария, применяемого развитыми странами и международными организациями в финансовой п

В финансовой математике широко представлены все виды статистических показателей: абсолютные, относительные и средние величины. Процентные деньги или просто процент

В заданиях, представленных в форме теста, необходимо выбрать правильный вариант ответа. Иногда правильных ответов может быть два и более. Принцип неравноценности денег заключается в

Рассмотрим процесс наращения (accumulation), т.е. определения денежной суммы в будущем, исходя из заданной суммы сейчас. Экономический смысл операции наращения состоит в определении величины той су

Ставка процентов не является застывшей на вечные времена величиной, поэтому в финансовых операциях, в силу тех или иных причин, предусматриваются дискретно изменяющиеся во времени процентные ставки

В любой простейшей финансовой операции всегда присутствуют четыре величины: современная величина (PV), наращенная или будущая величина (FV), процентная ставка (i) и время

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов. Применение схемы сложных процентов целесообразно в тех случаях, когда: пр

Период начисления по сложным процентам не всегда равен году, однако в условиях финансовой операции указывается не ставка за период, а годовая ставка с указанием периода начисления – номинальная

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час).

Но

Так же как для простых процентов, для сложных процентов необходимо иметь формулы, позволяющие определить недостающие параметры финансовой операции: срок ссуды: n

Достаточно часто в практике возникает ситуация, когда необходимо произвести между собой сравнение по выгодности условий различных финансовых операций и коммерческих сделок. Условия финансово-коммер

В практической деятельности часто возникает необходимость изменения условий ранее заключенного контракта – объединение нескольких платежей или замене единовременного платежа рядом последовательных

В заданиях, представленных в форме теста необходимо выбрать правильный вариант ответа. Иногда правильных ответов может быть два и более. Наращение – это: A – процесс у

В финансовой практике часто приходится решать задачи, обратные определению наращенной суммы: по уже известной наращенной сумме (FV) следует определить неизвестную первоначальную сумму долг

В заданиях, представленных в форме теста, необходимо выбрать правильный вариант ответа. Иногда правильных ответов может быть два и более. Дисконтирование – это: A – пр

До сих пор мы рассматривали случаи финансовых операций, состоящих из отдельного разового платежа, например, получение и погашение долгосрочной ссуды. Вместе с тем, погашение такой ссуды возможно не

Получатели поступлений оценивают свой доход суммарной величиной за полный срок действия платежа, разумеется, с учетом временной неравноценности денег. Наращенная сумма – с

Период Взносы* Проценты, начисленные за период Наращенная сумма на конец периода 500,00

Последовательные платежи в виде постоянной обычной годовой ренты определяются основными параметрами: R – размер платежа; n – срок ренты в годах; i

В финансовых операциях возможны ситуации, когда величина платежа либо увеличивается, либо уменьшается с течением времени, например, под влиянием инфляции. В таких случаях говорят о нерегулярных пот

k Платеж Проценты Наращенная сумма — 200,00

В заданиях, представленных в форме теста необходимо выбрать правильный вариант ответа. Иногда правильных ответов может быть два и более. Ответы на тесты приведены в конце пособия. По

Инфляция – это экономическое явление, которое возникает вследствие целого комплекса как политических, так и социально-экономических событий. Уровень инфляции выступает обобщающим показателем финанс

Владельцы денег не могут мириться с их обесцениванием в результате инфляции и предпринимают различные попытки компенсации потерь от снижения их покупательной способности. Наиболее распрост

В заданиях, представленных в форме теста необходимо выбрать правильный вариант ответа. Иногда правильных ответов может быть два и более. Уровень инфляции показывает: А

Для определения процентной ставки используется функция НОРМА, которая определяет значение процентной ставки за один расчетный период. Для расчета годовой процентной ставки полученн

Количественный анализ долгосрочной задолженности (займа) применяется для достижения сбалансированности, т.е. адекватности его параметров принятым условиям финансового соглашения, путем планирования

Год Долг (D) Выплата процентов (I = D

  • q) Взносы в погасительный фонд,

Год Долг (Dt) Взносы в погасительный фонд, (Rt = Yt) Накопленная величин

Год (t) Долг (D) Сумма погашения долга (dt) Выплата процентов (It)

Год (t) Долг (Dt) Срочная уплата (Yt) Проценты (It)

Частным случаем погашения долга равными срочными уплатами является потребительский кредит, при котором проценты начисляются сразу на всю сумму кредита, а сумма задолженности равномерно погашается н

Платеж t Долг (Dt=Dt-1-Rt) Срочная уплата (Yt) П

Инвестиции – это долгосрочные финансовые вложения экономических ресурсов с целью создания и получения выгоды в будущем, которая должна быть выше начальной величины вложений. Инвест

Поскольку денежные средства распределены во времени, то и здесь фактор времени играет важную роль. При оценке инвестиционных проектов используется метод расчета чистого приведенног

Для анализа инвестиций применяют и такой показатель, как срок окупаемости (payback period method) – продолжительность времени, в течение которого дисконтированные

При анализе эффективности инвестиционных проектов широко используется показатель внутренней нормы доходности (IRR – internal rate of return) – это ставка дисконтирования,

День Месяц Январь Февраль Март Апрель Май Июнь

Число периодов Ставка процентов за период 5,00% 10,00% 15,00% 20,00%

Число периодов Ставка процентов за период 5,00% 10,00% 15,00% 20,00%

Число периодов Ставка процентов за период 5,00% 10,00% 15,00% 20,00%

Число периодов Ставка процентов за период 5,00% 10,00% 15,00% 20,00%

i – процентная ставка, характеризующая интенсивность начисления процентов за год или эффективная ставка, измеряющая реальный относительный доход за год; j – номинальная г